
Web-based Supplementary Materials for Population
Intervention Causal Effects Based on Stochastic

Interventions by Iván Dı́az Muñoz and Mark van der Laan.

A Review of Efficiency Estimation in Semiparametric Mod-

els

The objective of this section is to provide an intuitive explanation of certain elements of efficient
estimation in semiparametric models. We do not pretend to give a comprehensive or rigorous
review, instead we intend to provide the non trained reader with the basic intuition for under-
standing why the methods described in the paper work. Careful and detailed definitions of the
concepts described here, and rigorous proofs of most of the claims can be found in ? and ?.

A.1 Asymptotically Linear Estimators

Let X ∼ P0 ∈M, whereM is a statistical (semi or non parametric) model, and let Ψ :M 7→ R be
a parameter defined as a mapping that takes elements in the model and maps them into the reals
(e.g., the mean Ψ(P) =

∫
xdP (x)). An estimator ψn of ψ0 = Ψ(P0) is called asymptotically linear

if there exist a function IC : X ×M 7→ R such that IC(·, P0) ∈ L2(P0),
∫
IC(x, P0)dP0(x) = 0

(?), and

ψn − ψ0 =
1

n

n∑
i=1

IC(Xi, P0) + oP (n−1/2).

The function IC is called the influence function of the estimator, and plays an important role
in estimation and inference, since it defines the asymptotic variance of the estimator. From the
central limit theorem, we conclude that if ψn is asymptotically linear with influence curve IC, then
√
n(ψn − ψ0)

d→ N{0, P0IC
2(·, P0)}.

A.2 Efficiency

Consider a family of parametric submodelsMε = {Pε : ε} ⊂ M that coversM and satisfies Pε=0 =
P0. A typical choice of family of parametric submodels is {{pε(x) = [1+εs(x)]p0(x) : ε} : P0s = 0},
where each parametric submodel is indexed by a function s, which is also its score. The tangent
space is defined as the closed linear span of the scores of all parametric submodels. A parameter

1

Ψ is called pathwise differentiable if there exists a function ν such that for each submodel

dΨ(Pε)

dε

∣∣∣∣
ε=0

= P0νs.

The function ν is called a gradient of the pathwise derivative. The only gradient D that is an
element of the tangent space is called the efficient influence function, and corresponds with the
influence function of any regular asymptotically linear (RAL) efficient estimator, i.e., any RAL
estimator whose asymptotic variance equals the efficiency bound (?), which is the semiparametric
generalization to the Cramer-Rao lower bound. The efficiency bound is then equal to EP0D

2(X).
The efficient influence function has been used by several authors (????) to construct RAL

efficient estimators. The basic idea to optimally estimate the parameter of interest is to find
estimators that solve the efficient influence curve equation. The properties of estimators that solve
a system of equations have been extensively studied in the literature and are provided by the
theory of M-estimators. Important references in M-estimation include ?, ?, ? and ?.

A.3 Proofs

Proof. Result 1. First of all, notice that the nonparametric estimator of ψ0 is given by

Ψ̂(Pn) =
∑
y∈Y

∑
a∈A

∑
w∈W

yPn(y|a, w)Pn(a− δ(w)|w)Pn(w)

=
∑
y∈Y

∑
a∈A

∑
w∈W

y
Pnfy,a,w
Pnfa,w

Pnfa−δ(w),w, (1)

where Pn = 1
n

∑n
i=1 δoi is the empirical measure, fy,a,w = I(Y = y, A = a,W = w), fa,w = I(A =

a,W = w) , fa−δ(w),w = I(A = a − δ(w),W = w), and I(·) denotes the indicator function. Here
Pf denotes

∫
fdP .

Recall that the efficient influence curve in a non-parametric model corresponds with the in-
fluence curve of the non-parametric estimator. This is true because the influence curve of any
regular estimator is also a gradient, and a non-parametric model has only one gradient. ? show
that if Ψ̂(Pn) is a substitution estimator such that ψ0 = Ψ̂(P0), and Ψ̂(Pn) can be written as
Ψ̂∗(Pnf : f ∈ F) for some class of functions F and some mapping Ψ∗, the influence curve of Ψ̂(Pn)
is equal to

IC(P0)(O) =
∑
f∈F

dΨ̂∗(P0)

dP0f
{f(O)− P0f}.

Applying this result to (??) with F = {fy,a,w, fa,w, fa−δ(w),w} gives the desired result.

Proof. Result 2. Conditioning first on (A,W) and then on W we get

EP0D(O|ψ0, Q̄, g) = EP0

[∑
a∈A

g0(a|W)

g(a|W)
g(a− δ(W)|W){Q̄0(a,W)− Q̄(a,W)}

]

+ EP0

[∑
a∈A

g0(a− δ(W)|W)Q̄(a,W)

]
− EP0

[∑
a∈A

g0(a− δ(W)|W)Q̄0(a,W)

]
,

which completes the proof.

2

B R function tmle.shift()

B.1 Arguments

Argument Description
Y Outcome vector.
A Treatment vector.
W Covariates matrix.
Qn An initial estimator of Q̄0 in the form of a function that takes a

vector A and a matrix W and returns the vector of conditional
expectations of Y given A and W.

gn An initial estimator g0 that takes as input a vector A and a matrix
W and returns the density of A conditional on W at points A.

delta A function of W defining the parameter of interest.
tol Tolerance value for the convergence of ε.
max.iter Maximum of iterations allowed.
Aval A vector with equally spaced values indicating a partition of the

support of A over which to compute Riemann sums to approximate
the integrals involved in the estimation process.

Table 1: Arguments of the R function tmle.shift

B.2 Code

tmle.shift <- function(Y, A, W, Qn, gn, delta, tol = 1e-5, iter.max = 5, Aval){

interval partition length

h.int <- Aval[3]-Aval[2]

this function takes as input initial estimator of Q and g and returns

their updated value

f.iter <- function(Qn, gn, gn0d = NULL, prev.sum = 0, first = FALSE){

numerical integrals and equation (7)

Qnd <- t(sapply(1:nrow(W), function(i)Qn(Aval + delta, W[i,])))

gnd <- t(sapply(1:nrow(W), function(i)gn(Aval, W[i,])))

gnd <- gnd/rowSums(gnd)

if(first) gn0d <- gnd

EQnd <- rowSums(Qnd*gnd)*h.int

D2 <- Qnd - EQnd

QnAW <- Qn(A, W)

H1 <- gn(A - delta, W)/gn(A, W)

equation (8)

est.equation <- function(eps){

sum((Y - (QnAW + eps*H1)) * H1 + (Qn(A + delta, W) - EQnd) -

rowSums(D2*exp(eps*D2 + prev.sum)*gn0d)/rowSums(exp(eps*D2 + prev.sum)*gn0d))

}

eps <- uniroot(est.equation, c(-1, 1))$root

updated values

3

gn.new <- function(a, w)exp(eps*Qn(a + delta, w)) * gn(a, w)

Qn.new <- function(a, w)Qn(a, w) + eps * gn(a - delta, w)/gn(a, w)

prev.sum <- prev.sum + eps*D2

return(list(Qn = Qn.new, gn = gn.new, prev.sum =

prev.sum, eps = eps, gn0d = gn0d))

}

ini.out <- f.iter(Qn, gn, first = TRUE)

gn0d <- ini.out$gn0d

iter = 0

iterative procedure

while(abs(ini.out$eps) > tol & iter <= iter.max){

iter = iter + 1

new.out <- f.iter(ini.out$Qn, ini.out$gn, gn0d, ini.out$prev.sum)

ini.out <- new.out

}

Qnd <- t(sapply(1:nrow(W), function(i)ini.out$Qn(Aval + delta, W[i,])))

gnd <- t(sapply(1:nrow(W), function(i)ini.out$gn(Aval, W[i,])))

gnd <- gnd/rowSums(gnd)

plug in tmle

psi.hat <- mean(rowSums(Qnd*gnd)*h.int)

influence curve of tmle

IC <- (Y - ini.out$Qn(A, W))*ini.out$gn(A - delta, W)/ini.out$gn(A, W) +

ini.out$Qn(A + delta, W) - psi.hat

var.hat <- var(IC)/length(Y)

return(c(psi.hat = psi.hat, var.hat = var.hat, IC = IC))

}

B.3 Example

Here is an example of how to use the previous function based on the data generating mechanism
presented in the simulation

n <- 100

W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.7))

A <- rpois(n, lambda = exp(3 + .3*log(W$W1) - .2*exp(W$W1)*W$W2))

Y <- rbinom(n, 1, plogis(-1 + .05*A - .02*A*W$W2 + .2*A*tan(W$W1^2) -

.02*W$W1*W$W2 + 0.1*A*W$W1*W$W2))

fitA.0 <- glm(A ~ I(log(W1)) + I(exp(W1)):W2, family = poisson, data = data.frame(A, W))

fitY.0 <- glm(Y ~ A + A:W2 + A:I(tan(W1^2)) + W1:W2 + A:W1:W2, family =

binomial, data = data.frame(A, W))

gn.0 <- function(A = A, W = W)dpois(A, lambda = predict(fitA.0, newdata = W,

type = "response"))

Qn.0 <- function(A = A, W = W)predict(fitY.0, newdata = data.frame(A, W,

row.names = NULL), type = "response")

tmle00 <- tmle.shift(Y, A, W, Qn.0, gn.0, delta=2, tol = 1e-4, iter.max = 5,

Aval = seq(1, 60, 1))

4

